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ABSTRACT 

An inverted pendulum is a classic case of robust controller design. A successfully validated and precise system 

model would greatly enhance the performance of the controller making system identification as a major 

procedure in control system design. Several techniques exist in literature for system identification, and these 

include time domain approach and frequency domain approach. This paper gives an in-depth analysis of system 

identification and modelling of rotary inverted pendulum that describes the dynamic models in upright and 

downward position. An extensive elaboration on derivation of the mathematical model describing the physical 

dynamic model of the rotary inverted pendulum is described in this paper. In addition, a frequency response 

function (FRF) of the physical system is measured. The parametric model estimated using non-linear least 

square frequency domain identification approach based on the measured FRF is then applied as a mean to 

validate the derived mathematical model. It is concluded that based on the validation, the dynamic model and 

the parametric model are well fitted to the FRF measurement.  

KEYWORDS: System Identification, Rotary Inverted Pendulum, Mathematical Modelling, Linear 

Approximation Method, Frequency Domain Identification. 

I. INTRODUCTION 

Control of under-actuated systems is difficult and has attracted much attention due to their wide-

ranging applications. During the last few decades, under-actuated physical systems have drawn great 

interest among researchers for developing different control strategies, such as those in robotics, 

aerospace engineering, and marine engineering[1]. An inverted pendulum is a difficult system to 

control being essentially unstable. Thus, control of an inverted pendulum is one of the most important 

classical problems in the research interest of control engineering to improve the performance of the 

control system[2]. It is a well-known fact that under-actuated systems have fewer actuators than the 

degrees of freedom. The rotary inverted pendulum (RIP) system consists of an actuator and two 

degrees of freedom. The pendulum is stable when hanging downwards whereas it is naturally unstable 

with oscillation. Therefore, torque or force must be applied to keep it balanced to remain in inverted 

position. The inverted pendulum model can be applied in control of a space booster racket and a 

satellite, an automatic aircraft landing system, aircraft stabilization in the turbulent air flow, 

stabilization of a cabin in a ship and others[3].   

Mathematical modelling, simulation, non-linear analysis, decision making, identification, estimation, 

diagnostics, and optimization have become major mainstreams in control system engineering. System 

identification is a general term used to describe mathematical tools and algorithms that build 

dynamical models from measured data[4]. Mathematical modelling is the basis of the control 

strategies when approaching the solution of a control problem. The physical system dynamic 

equations were performed analytically or numerically in solving these equations. It can be derived by 

the Newtonian mechanics and the Lagrange’s equations of motion, the Kirchhoff’s laws, and the 
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energy conservation principles[5]. There are many approaches when deriving the mathematical 

model, but Lagrange equations offer the systematic and error free way to do it[6]. The equations of 

motion normally were obtained by using the free body diagram referencing to Newtonian method. 

Linearization the non-linear model with single support point was possible performed about 

equilibrium point[7]. Then, the linear control theories can be applied in design and control the system. 

Besides that, the MATLAB GUI can be used to estimate automatically the mathematical model of the 

system[8]. Furthermore, parametric model, non-parametric model, black box model, white box model 

and linear model can be applied in system identification. The system identification was estimated 

using non-linear least square frequency domain identification method and H1 estimator in frequency 

response function (FRF)[9]. The frequency domain identification method offers several advantages 

compared to the time domain approach, such as data and noise reduction[10].  

The aim of this paper is to extensively elaborate the identification and modelling of a rotary inverted 

pendulum using mathematical model validated with parametric model generated using frequency 

response function. The paper is organized as follows; the next section provides the system setup. 

Section III shows the methodology of mathematical modelling and frequency response method 

together with the validation result and discussion. Finally, a conclusion and future work are given in 

Section IV of the paper. 

II. SYSTEM SETUP 

TeraSoft Electro-Mechanical Engineering Control System (EMECS) is a set of electro-mechanical 

devices for controlling engineering research and education. The EMECS consists of three main 

components such as Micro-box 2000/2000C, servo-motor module, and driver circuit. The Micro-box 

2000/2000C is a xPC Target machine that operates on wide variety of x86-based PC system where the 

system has analogue-to-digital converter (ADC), digital-to-analogue converter (DAC), general-

purpose input/output (GPIO) and encoder input/output boards installed. It works as data acquisition 

unit with operating voltage between 9 and 36 volts. Then, the servo-motor module consists of a 

permanent-magnet, brushed DC motor that runs on a terminal voltage of 24 volts. Besides that, 

angular position of shaft of the DC motor is measured by a rotary incremental optical encoder. The 

encoder has a resolution of 500 counts per resolution. Figure 1 shows a schematic diagram of EMECS 

that includes the servo-motor module, driver circuit, Micro-box 2000/2000C and host computer. The 

driver circuit and the servo-motor module are connected to the Micro-Box 2000/2000C. The 

switching power supply is connected to the driver circuit board and AC/DC adapter is connected to 

the data acquisition unit. Besides, Ethernet cable is connected between host computer and the data 

acquisition unit[11]. The system connections of EMECS are shown in Figure 2: 

 

 

Figure 1. System setup of EMECS. 
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Figure 2. System connections of EMECS. 

III. RESEARCH METHODOLOGY 

The methodology of identification of system is described using two different methods which are 

mathematical modelling and non-linear least square frequency domain identification. Figure 3 shows 

the overall methodology of the experiment performed. This experiment involved system identification 

and modelling, and model validation. 

 

Figure 3. Flow chart of overall methodology. 

These two methods were applied to compare and validate with the frequency response function (FRF) 

of the system. The mathematical model is obtained from formulating through equations by using 

measured system parameters. While non-linear least square frequency domain identification estimates 

parametric model that is obtained from the collected real-time data of the system FRF. 

3.1. Mathematical Modelling 

The RIP consists of a rigid rod called as pendulum which is rotating freely in a vertical plane with the 

objectives of swinging up and balancing the pendulum in the inverted position. Then, the pendulum is 

attached to a pivot arm that is mounted on the shaft of the servo-motor. Therefore, the pivot arm can 

be rotated in the horizontal plane by the servo-motor while the pendulum hangs downwards. On the 

other hand, the optical encoders are installed on the pivot arm and pendulum arm to detect the 

displacement. Figure 4 shows a free body diagram of the RIP. The system variables and parameters 

are defined in Table 1: 
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Figure 4. Simplified rotary inverted pendulum[12]. 

Table 1: Mechanical and electrical system parameters. 

Parameter Symbol Numerical value 

Mass of arm 1m  0.056 kg  

Mass of pendulum 2m  0.022 kg  

Length of arm 1l  0.16 m  

Length of pendulum 2l  0.16 m  

Distance to centre of arm mass 1c  0.08 m  

Distance to centre of pendulum mass 2c
 

0.08 m  

Inertia of arm 1J
 0.00215058

2kgm  

Inertia of pendulum 2J
 0.00018773

2kgm  

Viscous friction co-efficient of arm 1C
 0.02 s/kgm2

 

Viscous friction co-efficient of pendulum 2C
 390 s/kgm2

 

Gravitational acceleration g
 9.8

2s/m  

Angular position of arm 1  rad  

Angular velocity of arm 1


 
s/rad  

Angular position of pendulum 2  rad  

Angular velocity of pendulum 2


 
s/rad  

Motor torque constant tK
 0.01826 A/Nm  

Motor back-emf constant bK
 0.01826 rad/Vs  

Motor driver amplifier gain uK
 

10 count/V  

Armature resistance mR
 2.5604  

The Lagrange’s equation of motion was used to determine the non-linear system model. Then, the 

non-linear mathematical model was linearized to determine linearized system model which the model 

represented the pendulum in equilibrium point or upright position. Therefore, the linear 

approximation method was used in linearization of non-linear mathematical model. After that, the 

linearized mathematical model was converted in state-space model to determine the dynamic model of 

arm and pendulum as well. However, the system is unable to stabilize in upright position without a 

controller. Hence, the upright dynamic model required to convert in downward dynamic model for the 

validation purposes. 

3.1.1. Non-linear Mathematical Model 

In order to analyse the non-linear system, accurate mathematical model is approached to represent the 

system. The non-linear dynamic model describes the entire system where it gives exact relationships 

among all variables involved. All the linear models used for controller design are derived from the 
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non-linear model. A voltage signal is generated according to the designed control law and it is 

supplied to a PWM driver amplifier which drives the servo-motor to control the pendulum. By 

applying Kirchhoff’s voltage law, the relation between the control torque, 1  and the control voltage, 

e  is shown in Equation (1): 

11  

m

bt

m

ut

R

KK
e

R

KK
          (1) 

The mathematical model of RIP system is composed of two second-order non-linear differential 

equations which respectively described the dynamic models of the rotary arm and the pendulum by 

applying Lagrange’s equation of motion[13]–[15]. The equation of motion can be written in the 

general form in Equation (2): 
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where       Tttt 21   . In this case, the backlash of the gear of the DC motor is neglected. 

Equation (3) is the dynamic model of the pendulum in upright position with the motor torque 

characteristics described in Equation (1):  
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3.1.2. Linearization of Non-linear Mathematical Model 

The linear approximation method shown in Equation (4) is based on the expansion of the non-linear 

function into a Taylor series [16] about the operating point and the retention of only the linear terms. 

For  variables, ,,,, 21 nxxx  it can be briefly stated as: 
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The model can be linearized by considering the equilibrium state [3], [17]. When the inverted 

pendulum is near its equilibrium point, 221 ,,   are approximately equivalent to 0 ( 0 ). Thus, using 

linear approximations method to linear the model as follows: 

01  ; 02  ; 02   

21 x ; 12 x ; 23 x  

Transform Equation (3) to Equation (5) and Equation (6): 
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For Equation (5), let 

 212 ,,  fy   
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Therefore, Equation (13) is linearized Equation (5) yields: 
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For Equation (6), repeating the steps from Equation (7) to Equation (12). Therefore, Equation (14) is 

linearized Equation (6) yields: 
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In matrix form Equation (15), Equation (13) and Equation (14) can be written as: 
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3.1.3. Continuous-time State-space Model 

The state-space model [18] will be represented the dynamic model with the pendulum in the upright 

position. This model can be determined from the linearized model in Equation (15). A system is 

represented in state-space by the following equations: 
BuAxx             

DuCxy            (16) 

Define the state variables as follows: 
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Solve the two variables equations using substitution method to eliminate one of the variables by 

replacement when solving a system of equations. For Equation (18), let 
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Substitute Equation (19) in Equation (17), 3x yields Equation (20): 
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For Equation (18), let 
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Substitute Equation (21) in Equation (17), 4x yields Equation (22): 
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With the physical parameters of the system mentioned above, the state-space model is represented the 

linearized system in upright position as stated in equation (24): 
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In addition, the dynamic model for downward position of pendulum is formulated in the following 

formulas. Defined 2 to be the angular position of the pendulum that taken from the downward 

vertical. Thus, the relationship between terms involving 2  and 2 can be well defined as follows: 

  22 ; 22    ; 22    ; 
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  222  coscoscos  ; 

  222  sinsinsin  ; 

    2222 2sin22sin2sin2sin    

By substitute the terms above in Equation (3) yields: 
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Therefore, the dynamic model for downward position of the pendulum with the motor torque 

characteristics is compactly formulated in Equation (26): 
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In order to obtain state-space model for downward position, repeating the steps of formulation for the 

state-space model in upright position from Equation (4) to Equation (24). As a result, the linearized 

system model of downward position in state-space model as shown in Equation (27). It is followed by 

the model with the physical parameters as presented in Equation (28): 
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3.2. Frequency Response Method 

The system is identified based on actual data captured using several series of experiments. This 

approach is used to figure out the parametric model based on frequency response function (FRF) 

measurement [9]. System is excited using band-limited white noise signal [10] while the input voltage 

to the motor and the angular positions of the pendulum were measured and recorded in Micro-box as 

shown in Figure 5.  

1

Out1

2*pi/2000

count2rad1

2*pi/2000

count2rad

1

1/20/pis+1

Transfer Fcn

526

Sensoray

Encoder Input 

2

Sensoray526 ENC 1

526

Sensoray

Encoder Input 

1

Sensoray526 ENC 

526

Sensoray

Analog Output

1

Sensoray526 DA 

Target Scope

Id: 2

Scope (xPC) 1

Target Scope

Id: 1

Scope (xPC) 

Saturation

0.5

GainBand-Limited

White Noise

 

Figure 5. Input signal and schematic diagram of system identification. 

The input of the motor voltage and the output of the angular position of the pendulum are served as 

the input for the frequency response function (FRF). By determining the input values, FRF of the 

system can be estimated. The measurement was collected with 1000Hz of sampling frequency and 

180 seconds of total duration. The frequency response function of the system was then estimated 

using H1 estimator with a Hanning window applied. A system transfer function with a second order 

numerator value and a fourth order denominator is identified (29). This transfer function relates the 

input voltage to output angular position of the pendulum: 

 
654815896.20028.15

6.1644.32392.240277.0
234

23






ssss

sss
sG      (29) 

Figure 6 shows the validation result between two methods and the FRF. The downward dynamic 

model (28) and the parametric model (29) are plotted to compare and validate with the FRF of the 

system.  
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Figure 6. Validation of a system model. 

According to the result obtained, both two methods are fitted to the FRF of the system. Both models 

are fitted up to 23Hz of frequency with the acceptable validation. This is because the EMECS runs in 

low band of frequency and not exceeding 23Hz in actual experiment. Besides, the models can be 

fitted to higher frequency, but the order of transfer function of the models will be increased. This will 

further add to the complexity of the model, so it is better to maintain the order of the model as low as 

possible at the same time fulfilling the design requirement. Both models have second order numerator 

and fourth order denominator. Therefore, the formulation of downward dynamic model through 

mathematical modelling is validated which the model can be represented the system for simulation 

purposes in controller design. The parametric model that obtained using the frequency response 

method could as well be applied to represent the system model. 

IV. CONCLUSION AND FUTURE WORK 

It is concluded that the derived mathematical model describes extensively and closely the physical 

dynamic of the rotary inverted pendulum system. The accuracy and validity of this model however 

could be further enhanced by including other previously neglected parameters such as vibration, 

friction, wind and other disturbance signals that are hard to measure. The frequency response method 

offers greater advantage since it captures all the dynamic behaviour of the system as function of 

different frequencies. Both models could be applied in design of controller for this inverted pendulum 

system. The author is currently developing and analysing optimum linear quadratic regulator (LQR) 

controller for balance control. The performance of the controller designed at this stage could further 

validate the accuracy of the model derived in this work.  
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